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Bubble and droplet motion in binary mixtures is studied in weak heat and diffusion fluxes and in gravity by
solving the linearized hydrodynamic equations supplemented with appropriate surface boundary conditions.
Without gravity, the velocity field is induced by evaporation and condensation at the interface and by the
Marangoni effect due to a surface-tension gradient. In pure fluids, the latter nearly vanishes since the interface
temperature tends to the coexistence temperature Tcx�p� even in heat flow. In binary mixtures, the velocity field
can be much enhanced by the Marangoni effect above a crossover concentration c� inversely proportional to
the radius R of the bubble or droplet. Here c� is usually very small for large R for non-azeotropic mixtures. The
temperature and concentration deviations are also calculated.
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I. INTRODUCTION

On earth, bubble motion in liquid is caused by gravity.
Buoyancy effects increase dramatically with increasing the
droplet radius R. Due to the viscosity of liquid, it moves at a
constant velocity vg estimated as �1–3�

vg �
� − ��

�
R2g , �1.1�

where g is the gravity acceleration. Hereafter � and � ��� and
��� are the mass density and the shear viscosity outside �in-
side� the bubble. Another method of inducing bubble motion
is to apply a heat flux Q. It is well known that a surface-
tension variation in the surface gives rise to a Marangoni
velocity field �1�, causing bubble motion to lower the surface
free energy. Neglecting phase transition, Young et al. �4�
calculated it as

vY �
�1

��
RQ , �1.2�

where � is the thermal conductivity in liquid. The surface-
tension variation �� is assumed to be given by

�� = − �1�T , �1.3�

where �T is the ambient temperature deviation, so
vY ��� /�. Here �1�0 for most fluids, but �1	0 for some
fluid mixtures. If a liquid is heated from a boundary at zero
gravity, a suspended bubble is attracted to the warmer bound-
ary for �1�0 with a velocity of order −vY, until it is attached
to the wall. In heat flux on earth, the gravity and Marangoni
mechanisms can compete. We mention an experiment of
applying heat flow from below to silicone oil containing
air bubbles, where temperature gradients of order
10–102 K /cm balanced with the buoyancy and held the
bubbles stationary �4�. Subsequent microgravity experiments
on the Marangoni effect have been performed without phase
change �5,6�.

However, first-order phase transition between gas and liq-
uid �evaporation and condensation� should take place on the
bubble surface. This is particularly the case for pure �one-
component� fluids, where the pressure p is nearly homoge-
neous outside the bubble for slow motions and the interface
temperature should then be close to the coexistence tempera-
ture T=Tcx�p� at given p even in heat flux. Thus, in pure
fluids, the temperature gradient should nearly vanish inside
bubbles without Marangoni flow. Recently such temperature
profiles have been calculated from linearized hydrodynamic
equations supplemented with appropriate surface conditions
�7� and numerically in the dynamic van der Waals theory �8�.
Balance of a heat flux due to latent heat convection and an
applied heat flux Q gives the amplitude of the convective
velocity inside the bubble as

vc �
Q

��T
s
, �1.4�

where 
s=s�−s is the entropy difference per unit mass. If a
bubble �droplet� is suspended in liquid �gas� at zero gravity,
it migrates toward a warmer �cooler� boundary with a veloc-
ity of order vc �8�. In this evaporation-condensation mecha-
nism, a bubble in liquid is attracted to a warmer boundary
wall, which is consistent with experiments on pure fluids
without gravity �9�.

In this paper, we investigate bubble and droplet motion in
binary mixtures, where the Marangoni effect and the
evaporation-condensation can be both important. In analyz-
ing boiling experiments, Marek and Straub �10� argued that
convection around a bubble should be dominantly caused by
the Marangoni effect due to a very small amount of a non-
condensable gas. If a surfactant is added as a solute, such a
contamination effect should be even more enhanced �1,11�.
In our theory we shall see that the Marangoni velocity for
dilute non-azeotropic binary mixtures is of order

vM �
�1

kBnD0�
cRQ , �1.5�

where n is the number density, D0 is the solute diffusion
constant in liquid, and kB is the Boltzmann constant. Balance
of vc and vM yields a crossover concentration c� given by*onuki@scphys.kyoto-u.ac.jp
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c� = a1/R , �1.6�

where a1= �kBD0� /T��n /��
s��1�� is usually a microscopic
length far from the critical point. See sentences below Eq.
�4.16� for a1 near the critical point. Unless �1 is very small,
c� is very small for large droplet radius R�a1. For c�c� the
hydrodynamic motion is mostly due to the Marangoni effect.

Furthermore, there seems to have been no fundamental
argument on the coefficient �1 in Eq. �1.3� in binary mixtures
in nonequilibrium. In this paper we assume the continuity of
the temperature and the chemical potentials and neglect the
pressure deviations at the interface. Then it follows
�1=−��� /�T�cx,p, where the derivative is along the isobaric
line on the coexistence surface. This �1 tends to a well-
defined limit in the dilute limit of binary mixtures �c→0�.
Recently, it has been calculated for nonelectrolyte binary
mixtures �12�. Particularly near the solvent criticality, its
mean-field expression at small solute concentration reads

�1 = −
d�0

dT

dpc

dX

1

KKr
, �1.7�

where �0�T� is the surface tension of the pure solvent, pc�X�
is the critical pressure dependent on the solute molar fraction
X on the critical line, and KKr is the so-called Krichevskii
parameter �having the dimension of pressure� �13–17�. See
Appendix C for discussions of KKr. While d�0 /dT	0 for
pure fluids, the two parameters dpc /dX and KKr can be both
positive and negative, depending on the solute molecular size
and the solute-solvent interaction. For example, if near-
critical CO2 is a solvent, use of data in Ref. �17� gives the
value of �dpc /dX� /KKr in Eq. �1.7� for various solutes, which
is 0.90 for Neon but is −0.81 for Pentanol �12�.

In their experiment, Vochten and Petre �18� found that the
surface tension between air and aqueous mixtures containing
high carbon alcohols more than 1 mM exhibits a minimum
as a function of the temperature at constant pressure and
molar fraction. In such fluids, �1	0 at temperatures higher
than that giving the minimum. Inspired by their finding, con-
sequences of negative �1 have been discussed in two-phase
hydrodynamics particularly to develop heat pipes for utiliza-
tion in space �19–23�. Remarkably, if the sign of �1 is
changed, the direction of the Marangoni flow is reversed. As
a result, if �1	0, bubbles are easily detached from the heater
in boiling. This leads to liquid inflow onto the heater sup-
pressing its dryout, so fluids with �1	0 have been called
self-rewetting fluids. We mention two experiments with �1
	0 on earth. Abe �21� observed a considerable decrease in
the size of rising bubbles with addition of 1-butanol
�6 wt %� to water. Adding 1-heptanol �0.1 wt %� to water,
Savino et al. �23� observed bubble motion toward a cooler
end in a horizontal glass tube.

This paper will present linear analysis in the simplest case
of a spherical bubble or droplet in binary mixtures in weak
heat and diffusion fluxes and in gravity. In Sec. II, we will
give linear hydrodynamic equations and surface boundary
conditions including the Marangoni condition for the tangen-
tial stress �1,24�. In Sec. III, we will solve the equations in
steady states in the axisymmetric geometry. In Sec. IV, we
will examine the consequences in dilute mixtures. Estima-

tions near the critical point will also be presented. In Sec. V,
the velocity field around a bubble or droplet will be dis-
played in various cases.

II. BASIC EQUATIONS

A. Spherical droplet

We place a gas bubble in liquid with radius R in a non-
electrolyte binary fluid mixture. We do not assume surface
adsorption due to the amphiphilic interaction. The following
results can be used also for the case of a liquid droplet in gas
by exchanging “liquid” and “gas.” Suppose an equilibrium
state in the gravity-free condition �see Appendix A of Ref.
�7��, where the temperature T and the chemical potentials of
the two components �1 and �2 are homogeneous. The pres-
sure p is a constant p0 in the exterior r�R and is p0
+2� /R in the interior r	R from the Laplace law, where � is
the surface tension and r is the distance from the bubble
center. The interior and exterior concentrations are deter-
mined from the thermodynamics of binary mixtures �12�.

We then apply weak heat and diffusion fluxes and a grav-
ity acceleration g. They are all along the z axis taken to be in
the upward vertical direction �ez. Hereafter ez denotes the
unit vector along the z axis. The gradients of the temperature
T and the mass fraction c are homogeneous far from the
bubble and are written as

T = �dT

dz
	

r=

, C = �dc

dz
	

r=

. �2.1�

It is convenient to introduce the chemical-potential differ-
ence per unit mass as

� = �2 − �1, �2.2�

which has a gradient given by

M = �d�

dz
	

r=

= � ��

�T
	

pc

T + � ��

�c
	

pT

C , �2.3�

Here the thermodynamic derivatives are taken in the outer
phase in the isobaric condition.

The hydrodynamic equations are linearized with respect
to T, C, and g. The deviations are all proportional to one of
these quantities. After a transient relaxation, the bubble
moves at a constant velocity vD in the vertical z axis. We
may then take the origin of the reference frame at the bubble
center and seek a steady axisymmetric solution of the hydro-
dynamic equations with appropriate boundary conditions. To
linear order in T, C, and g, the bubble shape is spherical, as
assumed in the previous theories �2–4�. Deviation from sphe-
ricity occurs from second orders in these quantities.

In the following calculation it is convenient to use the
spherical coordinates �r ,� ,�� with the origin at the bubble
center. Using the solid angles � and � we define the three
orthogonal unit vectors,

e1 = r−1r = �sin � cos �,sin � sin �,cos �� ,

e2 =
�

��
e1 = �cos � cos �,cos � sin �,− sin �� ,
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e3 = e1 � e2 = �− sin �,cos �,0� . �2.4�

The interface normal is along e1. The velocity field v around
the bubble is orthogonal to e3 or e3 ·v=0.

B. Hydrodynamic equations

The mass densities of the two components are written as
�1 and �2. The total mass density � and the mass fraction c of
the second component are defined by

� = �1 + �2, c = �2/� . �2.5�

The mass fluxes of the two components are �1v−I and �2v
+I, where v is the velocity field and I is the diffusive flux.
The continuity equations for � and �1 are �25�

�

�t
� = − � · ��v� , �2.6�

�

�t
��c� = − � · ��cv + I� . �2.7�

We express I in terms of the isothermal mutual diffusion
constant D and the thermal diffusion ration kT as �25�

I = − �D��c + T−1kT � T� . �2.8�

The momentum density �v obeys

�

�t
�v + � · ��vv� = − �p + � · �J − �gez, �2.9�

where p is the pressure and �J= 
�ij� is the dissipative stress
tensor expressed in terms of the shear and bulk viscosities �
and � as

�ij = ���iv j + � jvi� + �� − 2�/3��ij � · v , �2.10�

where �i=� /�xi with xi=x, y, and z. The last term in Eq.
�2.8� represents the gravity acceleration with ez being the
unit vector along the z axis. The �total� energy density
eT=e+�v2 /2 consisting of the internal energy density e and
the kinetic energy �v2 /2 is governed by

�

�t
eT = − � · ��eT + p�v − �J · v + q� − �gvz, �2.11�

where q is the dissipative heat current expressed as �25�

q = − � � T + AI , �2.12�

where � is the thermal conductivity in the absence of diffu-
sion flux and A is a constant. Because of the symmetry of the
Onsager coefficients �see Appendix A�, there is a relation
between kT and A given by

kT = �A − � + T� ��

�T
	

cp
� �c

��
	

pT

. �2.13�

From Eqs. �2.1� and �2.3� the heat flux and diffusion flux
are written as q→−Qez and I→−Iez far from the bubble
r�R, where

Q = �T + AI , �2.14�

I = �D�C + T−1kTT� . �2.15�

The pressure gradient tends to −�gez, while the velocity
tends to −vDez because the bubble is at rest in our reference
frame. In the present work we linearize the hydrodynamic
equations for the velocity field v and the deviations �p, �T,
and �c with respect to T, C, and g in steady states in the bulk
region r�R. Here we may set ��¯� /�t=0 neglecting the
time dependence. From Eq. �2.6� it follows the incompress-
ibility condition,

� · v = 0. �2.16�

Then the bulk viscosity � does not enter in our calculations.
This incompressibility condition holds even in compressible
fluids in our linear theory. Notice that we neglect the term
v ·�� in Eq. �2.6� since it is of order Tg in the gravity-
induced density stratification. In the bulk region r�R, Eqs.
�2.7� and �2.11� yield

�2�T = 0, �2�c = 0. �2.17�

The momentum equation becomes

− ��p + ��2v − �gez = 0 . �2.18�

The pressure deviation is defined by �p= p− p0 for r�R and
�p= p− p0−2�0 /R for r	R. For r�R, taking the divergence
of Eq. �2.18� yields

�2�p = 0. �2.19�

The term −��� /�z�g is of the second order for r�R and is
negligible in our approximation.

C. Interface boundary conditions

Next we consider the boundary conditions at the surface
r=R. In this subsection all the quantities are those at
r=R�0. In the following equations the quantities at
r=R−0 �immediately inside the bubble� are primed as v�,
�T�, �p�¯, while those at r=R+0 �immediately outside the
bubble� are unprimed. Hereafter, for any physical quantity
A, the symbol

�A� = A − A� �2.20�

denotes the discontinuity of A at the surface. For example,
the entropy difference �per unit mass� and the mass concen-
tration are written as

�s� = s − s�, �c� = c − c�. �2.21�

The Gibbs-Duhem relation yields �s� / �c�=−��� /�T�cx,p in
terms of the chemical-potential difference �. Hereafter
��¯ /�¯�cx,p is the derivative taken along the isobaric line
on the coexistence surface.

The mass conservation at the surface yields e1 · ��v�=0. It
is convenient to introduce the mass flux J through the inter-
face by

J = �e1 · v = ��e1 · v�, �2.22�

which arises from conversion between gas and liquid. We
assume the continuity of the tangential velocity,
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e2 · �v� = e2 · v − e2 · v� = 0 . �2.23�

The stress balance at the interface yields

��p − e1 · �J · e1� +
2

R
�� = 0, �2.24�

�e2 · �J · e1� + e2 · ��� = 0 , �2.25�

in the normal and tangential directions, respectively.
Here ��=�−�0 is the surface-tension deviation and
e2 ·�=R−1� /��. From Eq. �2.25� the tangential gradient of
the surface tension is equal to the discontinuity of the tan-
gential stress, which gives rise to a Marangoni flow �1,24�.

As in the pure-fluid case �7�, we assume that the devia-
tions of the temperature and the chemical potentials are con-
tinuous at the interface,

�T = �T�, �2.26�

��1 = ��1� ��2 = ��2�. �2.27�

See Appendix B of our previous work �7� and item �i� in Sec.
VI of this work for discussions on the validity of these as-
sumptions. The Gibbs-Duhem relation for infinitesimal de-
viations is written as �1−c���1+c��2=−s�T+�−1�p, which
holds in the liquid and gas regions close to the surface. Fur-
ther use of Eqs. �2.26� and �2.27� yields

�c��� + �s��T =
1

�
�p −

1

��
�p�, �2.28�

where ��=��2−��1.
From Eq. �2.7� the mass conservation of the second com-

ponent at the surface gives

�c�J + e1 · �I� = 0. �2.29�

From Eq. �2.11� the energy conservation at the interface
gives

��s�T + �c���J + e1 · �q� = 0, �2.30�

where use has been made of the thermodynamic relation
e+ p=�1�1+�2�2+�sT= ��1+c�+sT��. From Eqs. �2.29�
and �2.30� J may be removed to give

e1 · �q − �TI� = 0, �2.31�

where the coefficient � is defined by

� = �/T + �s�/�c� . �2.32�

Note that � is a constant continuous across the interface. The
flux q−�TI is continuous along the normal direction across
the interface.

D. Pressure and surface-tension deviations

We shall see that the pressure deviations in the two phases
are negligibly small for large R in Eq. �2.28�. This yields the
following relation:

�� � −
�s�
�c�

�T = � ��

�T
	

cx,p
�T , �2.33�

which plays a key role in the following calculations. It may
be justified if the hydrodynamic deviations are expanded in
powers of the inverse bubble radius R−1. To leading order in
R−1, the right-hand side of Eq. �2.28� is negligible, resulting
in Eq. �2.33�.

In equilibrium, the surface tension of binary mixtures is
defined on the coexistence surface in the space of three field
variables such as T, p, and �. Here the curvature effect is
neglected for large R. Then the surface tension is a function
of T and � if p is taken to be the coexistence pressure
pcx�T ,��. In Eq. �2.33� the temperature and chemical-
potential deviations near the interface are still on the coex-
istence surface in the isobaric condition. Thus the surface-
tension deviation is written as �27�

�� = a1�T + a2�� � − �1�T , �2.34�

where a1 and a2 are the expansion coefficients. As discussed
in Sec. I, the coefficient �1 is written as

− �1 = a1 − a2
�s�
�c�

= � ��

�T
	

cx,p
. �2.35�

III. AXISYMMETRIC SOLUTION

A. Velocity and pressure

In our problem, the fluid flow is axisymmetric with re-
spect to the z axis. The velocity field v�r� and the pressure
deviation �p�r� are expressed in the same forms as in the
one-component fluid �7,26�. That is, in terms of two func-

tions Q̂�r� and Ĥ�r�, v�r� is written as

v = �dĤ

dr
−

Ĥ

r
+ Q̂r	 z

r2r +
1

r
Ĥez, �3.1�

which satisfies Eq. �2.16�. Outside the bubble we have

Q̂ = Q1
R

r2 , Ĥ =
R

2
Q1 + H1

R3

r2 − vDr �r � R� , �3.2�

where vD is the bubble velocity in the original reference
frame. Inside the bubble we have

Q̂ = Q2�
r

R2 , Ĥ = −
2

5R2Q2�r
3 + H2�r �r 	 R� . �3.3�

Then Eq. �2.14� is satisfied. In particular, Eq. �2.16� yields

Q1 = gR2�� − ���/3� . �3.4�

The coefficients Q1, H1, Q2�, and H2� have the dimension of
velocity. From Eqs. �2.18� and �2.19� the pressure deviation
is determined as

�p�r� = �Q1
Rz

r3 − g�z �r � R�

= − 2��Q2�
z

R2 − g��z �r 	 R� . �3.5�
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The mass flux through the interface and the surface ten-
sion deviation are angle dependent as

J = J1 cos �, �� = �1 cos � , �3.6�

where cos �=z /r and J1 and �1 are constants. From the
boundary conditions Eq. �2.22�–�2.25�, H1, vD, H2�, and �1
may be expressed in terms of the three quantities J1, Q2�, and
Q1 as

H1 =
1

3
� 1

��
−

1

�
	J1 −

1

15
Q2� +

1

6
Q1, �3.7�

vD = −
1

3
� 2

��
+

1

�
	J1 +

2

15
Q2� +

2

3
Q1, �3.8�

H2� =
1

��
J1 +

1

5
Q2�, �3.9�

�1 = � 2

��
−

2

�
	�J1 − �2

5
� +

3

5
��	Q2� + �Q1. �3.10�

Since Q1 is determined as in Eq. �3.4�, the two quantities J1
and �1 remain unknown.

From Eqs. �2.18� and �2.19� the deviation of the chemical-
potential difference �� also satisfies �2��=0 for r�R. Then
�T and �� are written as

�T�r� = �T� − T�
R3

r3 z + Tz �r � R�

= T�z �r 	 R� , �3.11�

���r� = �M� − M�
R3

r3 z + Mz �r � R�

= M�z �r 	 R� , �3.12�

where T and M are the gradients far from the bubble defined
in Eqs. �2.1� and �2.3�, while T� and M� are those within it.
At r=R, �T and �� are continuous from Eqs. �2.26� and
�2.27�. For r�R we have

�T = T�z, �� = M�z . �3.13�

In terms of T� and M� the relation Eq. �2.28� is rewritten as

�c�M� + �s�T� = ��

�
Q1 +

2��

��
Q2� 1

R2 . �3.14�

Furthermore, we may derive two equations for T� and M�
from Eqs. �2.29� and �2.30�. Together with Eqs. �3.10� and
�3.14�, we have four equations, which constitute a closed
set determining J1, Q2�, T�, and M�. Here, without
assuming Eq. �2.33�, we may assume the general relation
��=a1�T+a2�� in the first line of Eq. �2.34�.

B. Case of gÅ0 and Q=I=0

Here we consider the gravity-induced solution with
g�0 and Q=I=0, where all the coefficients in Eqs.

�3.7�–�3.10� are proportional to Q1 in Eq. �3.4�. If the pres-
sure deviations in Eq. �2.28� are neglected, there arise no
deviations of the temperature, the chemical potential, and the
surface tension, T=T�=J1=�1=0 in Eqs. �3.7�–�3.10�. Then
Eq. �3.10� gives

Q2� = 5�Q1/�2� + 3��� , �3.15�

while Eq. �3.8� gives vD=vg, where vg is the well-known
gravity-induced velocity �1–3�

vg =
2�� + ����� − ���

3��2� + 3���
R2g . �3.16�

In the lowest order of R−1 the right-hand side of Eq. �2.28� at
r=R becomes

�p

�
−

�p�

��
� ��

�
+

10���

���2� + 3���
 z

R2Q1, �3.17�

where the gravity terms cancel to vanish. If divided by Q1,
the above quantity is of order R−1. If we assume the linear
relation ��=a1�T+a2��, the above relation Eq. �3.17� leads
to �T����Q1 /R, T��M��Q1 /R2, �1�Q1 /R, and
J1�Q1 /R2. Thus, in the presence of weak gravity only, a
large droplet or a large bubble moves with the velocity vg in
Eq. �3.16�, where first-order phase transition and temperature
inhomogeneities are negligible.

C. Case of QÅ0, IÅ0, and g=0

We seek the solution in the presence of Q and I in the
gravity-free condition g=0. Remarkably, �1�R in binary
mixtures with phase change, while �1�R−1 in one-
component fluids. We clarify the relationship of our theory
and the previous theories: �i� To obtain the solution without
phase change �4�, we set J1=0 and �1=−�1RT��R in Eqs.
�3.7�–�3.10� and require the energy conservation relation
e1 · �q�=0 from Eq. �2.30�. �ii� To obtain the solution for
one-component fluids with phase change �7�, we neglect �1
and retain J1 in Eq. �3.10�.

We use the relation Eq. �2.33� or neglect the right-hand
side of Eq. �3.14� to obtain

M� = − T��s�/�c� . �3.18�

The above relation will be justified self-consistently at the
end of this subsection. From Eqs. �2.34� and �3.13� �1 in
Eqs. �3.6� and �3.10� is expressed as

�1 = − �1RT�. �3.19�

As will be shown in Appendix B, T� can be written as

T� =
3

2�e + �e�
�Q − �TI� , �3.20�

where Q and I are defined by Eqs. �2.14� and �2.15�. We
introduce the effective thermal conductivity by

�e = � +
�D

T
� ��

�c
	

Tp

�kT + Z�2. �3.21�

The �e and �e� in Eq. �3.20� are the values of �e at
r=R+ �0. In Eq. �3.21� we define Z by
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Z

T
= � �c

�T
	

�p

− � �c

��
	

Tp

�s�
�c�

= � �c

�T
	

cx,p
. �3.22�

On the other hand, the mass flux through the interface J is
calculated from Eq. �2.29� or Eq. �2.30�. Then J1 in Eq. �3.6�
is expressed as

J1 = 3
�2�a + �a��I − �2B + B��Q

�c��2�e + �e��
, �3.23�

where �a, �a�, B, and B� are the values of �a and B at
r=R+ �0 with

�a = �e + �TB = � + AB , �3.24�

B = �D�kT + Z�/T . �3.25�

From Eq. �3.10� we obtain

Q2� =
5

2� + 3��
��1RT� + � 2

��
−

2

�
	�J1 . �3.26�

Substitution of the above relation into Eq. �3.8� yields the
drift velocity composed of two parts,

vD = vD
M + vD

c , �3.27�

where vD
M arises from the Marangoni effect and vD

c from the
evaporation-condensation. They are written as

vD
M =

2�1

3�2� + 3���
RT�, �3.28�

vD
c =

− 2

2� + 3��
��

�
+

��

2�
+

��

��
	J1. �3.29�

In terms of these characteristic velocities, the velocity field
v�r� in the reference frame moving with the bubble or the
droplet is expressed as

v = vD
MaM +

���� − ��vD
c

��� + ���� + ��/2�
ac − �vD

M + vD
c �ez,

�3.30�

where aM =aM�r� and ac=ac�r� are the following space-
dependent dimensionless vectors:

aM = −
R3

2r3ez +
3R3

2r5 zr �r � R�

=
5

2
ez −

3r2

R2 ez +
3

2R2zr �r 	 R� , �3.31�

ac =
��

2�
�R3

r3 ez −
3R3

r5 zr �r � R�

=
zr

R2 + �2 +
��

2�
−

2r2

R2 ez �r 	 R� , �3.32�

We may now show that the right-hand side of Eq. �3.14� is
surely negligible for large R. Use of Eq. �3.26� gives

�p

�
−

�p�

��
=

10��

2� + 3��
��1T�

��R
+ � 2

��
−

2

�
	 �J1

��R2 .

�3.33�

We compare the term ��R−1T�� on the right-hand side of Eq.
�3.33� and the term �s�T� on the left-hand side of Eq. �3.14�.
The former is much smaller than the latter for
R� ��1 /���s��, where the right-hand side is microscopic. The
term ��R−2J1� due to the evaporation-condensation in Eq.
�3.33� is also negligible, as already verified in our previous
paper �7�.

The concentration deviation �c�r� can also be expressed
in the same form as in Eqs. �3.11� and �3.12�, where the
gradient C far from the droplet satisfies Eq. �2.3�, Its values
at r=R�0 are written as �c� and are expressed as

�c+ =
Z

T
T�z, �c− =

Z�

T
T�z , �3.34�

where Z and Z� are the values of Z in Eq. �3.22� at
r=R�0. If Z�Z�, �c is discontinuous at r=R.

In passing, we note that the Marangoni effect vanishes in
azeotropic mixtures �26�, where the two phases have the
same composition or �c�=0. There is also no difference in
the molar fractions of the two phases �see the sentence below
Eq. �C3��. Special analysis is needed when we treat nearly
azeotropic mixtures such as H2O-D2O mixtures �17�. Let us
consider the limit �c�→0 in the equations in this subsection.
In fact, Z��c�−1 and �e��c�−2 from Eqs. �3.20� and �3.21�,
leading to �1��1�c�2, T���c�2�Q−�TI�, and

vD
M � �1�c�2R�Q − �TI� �3.35�

from Eqs. �3.19�, �3.20�, and �3.28�. Here �1��c�−1 �12� and
�1�c�2��c� so the Marangoni flow is of order �c�.

IV. DILUTE MIXTURES IN GAS-LIQUID COEXISTENCE

Let the second component be a dilute solute. Under the
condition Eq. �A8� we set

c � m2X/m1, �4.1�

��c/���Tp � m2
2X/m1T , �4.2�

where X is the molar fraction and m1 and m2 are the molecu-
lar masses. The second relation �Eq. �4.2�� does not hold
very close to the solvent criticality even for small X �see Eq.
�C7��. Hereafter the Boltzmann constant will be set equal to
unity. In the literature �12–17�, Henry’s law is expressed in
terms of the solute molar fractions. That is, in equilibrium,
the solute molar fraction in gas Xg and that in liquid X� are
related by the partition coefficient �12�,

K = Xg/X�, �4.3�

which depends on T along the solvent coexistence line
p= pcx�T�. In dilute mixtures �c� /c= �X� /X holds and �c� /c is
independent of c as

�c�/c = 1 − K �gas bubble�

= 1 − K−1 �liquid droplet� . �4.4�
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A. Expressions as c\0

To simplify the notation we introduce the following di-
mensionless parameter:

W =
�X�

X���
=

�c�
cm1�s�

, �4.5�

where �=m1s is the entropy per solvent particle. This param-
eter tends to a well-defined limit in the dilute limit, vanishes
for azeotropic mixtures, and becomes proportional to the
Krichevskii parameter KKr near the solvent criticality as in
Eq. �C6� in Appendix C. In Eq. �3.22� Z behaves in terms of
W as

Z � −
m2c�s�

�c�
= −

m2

m1W
. �4.6�

From Eq. �3.21� �e is inversely proportional to c as

�e �
�D0

m2c
Z2 �

nD0

W2X
, �4.7�

where D0=limc→0 D is the diffusion constant of a single sol-
ute molecule and n=� /m1 is the solvent number density. The
thermal conductivity � in Eq. �3.21� is smaller than the right-
hand side of Eq. �4.7�, as will be discussed in Appendix C.
Here, in calculating the flux e1 · �q−�TI� in Eq. �2.31�, we
have picked up the contribution from the solute diffusion to
obtain �e in Eq. �4.7�.

Furthermore, �a in Eq. �3.24� and B in Eq. �3.25� are finite
as c→0. From Eq. �3.20� we thus find T��c as

T� � AMc�Q − T
�s�
�c�

I	 . �4.8�

Here we have set ���s� / �c� from Eq. �2.32� assuming that I
is of order c. The coefficient AM is a positive constant inde-
pendent of c as c→0 and is defined by

AM =
3W2m1/m2

2nD0 + X�n�D0�/X
, �4.9�

which is expressed in terms of the molar fractions X and X�
outside and inside the domain. The mass flux through the
interface J in Eq. �2.22� tends to that of the pure fluid as
c→0. That is, J1 in Eq. �3.6� becomes

J1 = �3/�s�T�Q . �4.10�

Now the two drift velocities vD
M in Eq. �3.28� and vD

c in Eq.
�3.29� are written as

vD
M =

2AM�1

3�2� + 3���
cR�Q −

�s�
�c�

TI	 , �4.11�

vD
c =

− 6

2� + 3��
��

�
+

��

2�
+

��

��
	 Q

�s�T
. �4.12�

From Eq. �3.34� the deviation of the mass fraction �c at
r=R�0 are expressed as

�c+

c
=

�c−

c�
= −

m2�s�
�c�

T�z . �4.13�

Thus �c /c is continuous and ��c�=−m2�s��T at r=R to lead-
ing order in R−1. In our linear theory we require ��c��c,
which becomes �T��R� ��c� /m2�s��. From Eq. �4.8� this in-
equality is satisfied for small Q and I even as c→0.

Let us consider situations in which the diffusion flux I is
negligible in vD

M in Eq. �4.11�. Then vD
M and vD

c have the same
sign for a bubble with �1�0 and for a liquid droplet with
�1	0, while they have different signs for a bubble with
�1	0 and for a liquid droplet with �1�0. In accord with the
experiments �21–23�, bubbles can move toward cooler re-
gions with increasing the concentration of a solute in the
case �1	0.

B. Dilute mixtures near the solvent criticality

The above expressions can be used even in the vicinity of
the solvent criticality under the condition X�n /W2Cp in Eq.
�C8�, where Cp is the isobaric specific heat per unit volume.
In the near-critical case, the reduced temperature,

� = 1 − T/Tc, �4.14�

is small �say, less than 10−3� and the differences between the
two phases tend to vanish, so ���� and ����. In Eq. �4.9�
we have

AM � W2m1/m2nD0. �4.15�

Defining the solute hydrodynamic radius a0 using the Stokes
formula D0=T /6��a0, we obtain

vD
M =

4�

5nT
W2�1a0RX�Q −

�s�
�c�

TI	 , �4.16�

vD
c = − 3Q/nT��� , �4.17�

where ���=m1�s����.
With increasing X from zero, crossover occurs from the

pure-fluid behavior to the mixture-behavior for X�X�,
where the crossover molar fraction is

X� = �����1�W2a0�−1R−1. �4.18�

This is equivalent to Eq. �1.6� near the solvent criticality
with c�=m2X� /m1�X� if �W��1 and m2�m1. The right-
hand side is of order �1−�−�� /R for �W��1 and
�1�−d�0 /dT with ��0.625 and ��0.33, ����−�� being
the correlation length ��the interface thickness�.

In near-critical pure fluids in the gravity-free condition, a
bubble in liquid was observed to be attracted to a warmer
boundary �9�. With addition of a small amount of various
solutes, it is then of great interest whether a bubble is more
attracted to or eventually repelled from a warmer boundary.
Here the crossover concentration X� should be determined to
confirm theoretical expression �4.18�.

V. VELOCITY PROFILES FOR QÅ0, IÅ0, AND g=0

Young et al. �4� calculated the velocity field without phase
change due to the Marangoni effect for �1�0 �which is
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given by Eq. �3.30� with vD
c =0�. See its dipolar profile in

their paper and in our previous paper �7�. On the other hand,
our previous paper �7� has presented some examples of the
velocity field due to first-order phase change for pure fluids
�which is given by Eq. �3.30� with vD

M =0�. Here we display
the velocity fields realized in dilute mixtures with increasing
c or in nearly azeotropic mixtures.

Without gravity, we show the velocity field �vx ,vz� in
the x-z plane for a bubble with �� /�=�� /�=0.5 in Fig. 1 and
for a liquid droplet with �� /�=�� /�=2 in Fig. 2. It is written
in the reference frame moving with a bubble or a droplet in
the case vD

c 	0. Here the liquid density is twice larger than
the gas density, which is realized for T /Tc=0.97 in the van
der Waals theory of pure fluids. In the left panels, we set
vD

M =0 for pure fluids or for �1=0 in binary mixtures. In the
middle panels, we set vD

M =vD
c , where the two mechanisms

equally contribute to the drift velocity. In the right panels, we
set vD

M =−vD
c , where the drift velocity vD in Eq. �3.27� van-

ishes and the bubble or the droplet is at rest.

VI. SUMMARY AND REMARKS

We have examined the competition of the evaporation-
condensation effect and the Marangoni effect in the motion
of a bubble or a droplet in weak heat and diffusion fluxes in
binary mixtures. We have treated the simplest case of steady
states with a constant drift velocity in the axisymmetric ge-
ometry, though the nonlinear terms in the hydrodynamic
equations cannot be neglected in practical applications using
large bubbles. In non-azeotropic binary mixtures, the cross-
over occurs from the evaporation-condensation mechanism
to the Marangoni mechanism at a very small solute concen-
tration. In our theory, the coefficient �1 in Eq. �1.3� controls
the strength of the Marangoni flow in heat flux, which can be
both positive and negative depending on the solvent and sol-
ute species �12�. The Marangoni flow is induced in opposite
directions in the normal case �1�0 and in the anomalous
case �1	0, though the case �1�0 has mostly been studied.

Some further remarks are given below.

FIG. 1. Gravity-free velocity field around a bubble for �� /�=�� /�=0.5 in the x-z plane in Eqs. �3.30�–�3.32�, where vD
M =0 �left�,

vD
M =vD

c �middle�, and vD
M =−vD

c �right�.

FIG. 2. Gravity-free velocity field around a liquid droplet for �� /�=�� /�=2 in the x-z plane in Eqs. �3.30�–�3.32�, where vD
M =0 �left�,

vD
M =vD

c �middle�, and vD
M =−vD

c �right�.
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�i� We have assumed the continuity of the temperature and
the chemical potentials and neglected the pressure deviations
at the interface to obtain the key relation Eq. �2.33� or Eq.
�3.18�. It means that the interface stays on the coexistence
surface p= pcx�T ,�� even in nonequilibrium. This is justified
for large R. However, if the gas phase is very dilute far
below the critical temperature, the surface dissipation mainly
occurs in the gas phase side within a distance of the mean-
free path inversely proportional to the gas density �28–30�.
There can then be a temperature jump at the interface.

�ii� The behavior of the coefficient �1 in Eq. �1.3� or in
Eq. �2.35� is highly nontrivial. Theoretically, it has been ex-
amined only for dilute mixtures �12�. Its behavior is also of
interest for binary mixtures near a lower critical solution
temperature �LCST�. In a phase-separated mixture of
butoxyethanol-water near its LCST, Braun et al. �31� applied
heat pulses to water-rich droplets to observe their motion
from a high-temperature region to a low-temperature region.
This motion was due to the Marangoni effect because the
motion was in the direction of decreasing the surface tension.

�iii� Boiling on a heated substrate has been of great inter-
est both on earth and in space �32�. The effect of a noncon-
densable gas should be studied in future. In accord with this
paper, Marek and Starub �10� claimed that the temperature
gradients along the bubble interface inducing a Marangoni
flow are caused by saturation pressure gradients due to a
nonuniform accumulation of a noncondensable gas along the
interface. Such flow serves to suppress detachment of
bubbles for �1�0, but should accelerate it for �1	0 �21�.

�iv� In gravity-free conditions, a spherical bubble or drop-
let can be suspended in liquid or gas in equilibrium. It is of
great interest how the velocity field and temperature evolve
after application of heat flux from a boundary. The piston
effect comes into play on acoustic time scales �26,33�. On
longer time scales, a small amount of a solute should drasti-
cally change the hydrodynamic behavior inducing a Ma-
rangoni flow. However, since we have treated only steady
states, it remains unclear how the concentration changes in
time along the interface.

�v� Thermocapillary hydrodynamics has been puzzling
near the critical point �9,26,33�, where the singularities of the
thermodynamic and dynamical properties largely influence
the dynamics. Condition �4.2� or condition �C8� does not
hold sufficiently close to the critical point, where the results
in Sec. IV cannot be used. Thus, with addition of a solute,
two-phase hydrodynamics poses a new problem of critical
dynamics.

�vi� Finally, we should stress that surfactant molecules
absorbed at interfaces give rise to Marangoni flow �1,11�,
though this effect is beyond the scope of this paper.
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APPENDIX A: ONSAGER RELATIONS

In the linear-response theory, the dissipative heat and dif-
fusion fluxes, q and I, in binary mixtures are expressed in
terms of the Onsager kinetic coefficients Lij �25�. The ther-
modynamic forces are �T and ��� /T� as

q = − L11 � T − TL12 �
�

T
, �A1�

I = − L12
1

T
� T − L22 �

�

T
, �A2�

where �=�2−�1 with �i being the chemical potentials per
unit mass. We then consider the dynamic equation for the
entropy density S=�s per unit volume. The thermodynamic
relation TdS=de−�1d�1−�2d�2 and the hydrodynamic
equations yield

�

�t
S + � · �Sv +

1

T
q −

�

T
I	 =

1

T
�̇ , �A3�

where �̇ is the heat production rate per unit volume expressed
as

�̇ = �
ij

�ij
�vi

�xj
− q ·

�T

T
− TI · �

�

T
. �A4�

The first term arises from the viscous damping and the last
two terms from the heat conduction and diffusion. As is well
known, �̇ is non-negative-definite if the coefficients Lij con-
stitute a symmetric positive-definite 2�2 matrix. It is well
known that Lij are expressed in terms of the time integral of
the appropriate flux time correlations �Green-Kubo formulas�
�26�.

It is convenient to express q as in Eq. �2.12� and I as in
Eq. �2.8�. Then �, A, D, and kT are expressed as

� = L11 − L12
2 /L22, �A5�

A = TL12/L22, �A6�

�TD = L22� ��

�c
	

pT

, �A7�

�DkT = L12 −
�

T
L22 + � ��

�T
	

cp

L22. �A8�

If L12 and L22 are removed from Eqs. �A6�–�A8�, kT and A
are related as in Eq. �2.13�.

APPENDIX B: CALCULATIONS OF T� and J1

To derive Eq. �3.20� we calculate the heat and diffusion
fluxes at the interface in the normal direction substituting
Eqs. �3.11� and �3.12� into Eqs. �A1� and �A2� and setting
M�=−T��s� / �c� from Eq. �3.14� for large R. The unprimed
quantities are the values at r=R+0, while the primed ones
are those at r=R−0.

From Eq. �3.11� the gradient e1 ·��T normal to the inter-
face is �3T−2T��cos � for r=R+0 and to T� cos � for
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r=R−0. From Eq. �3.12� the gradient e1 ·��� is obtained by
replacement of T� and T by M� and M. Then use of Eqs.
�3.11�–�3.14� gives

e1 · q = �2�aT� − 3Q�ẑ �r = R + 0� ,

=− �a�T�ẑ �r = R − 0� , �B1�

e1 · I = �2BT� − 3I�ẑ �r = R + 0� ,

=− B�T�ẑ �r = R − 0� �B2�

where ẑ=z /r=cos �. We define Q and I in Eqs. �2.14� and
�2.15� and introduce

�a = L11 − �L12 = � + L12�A/T − �� , �B3�

B = �L12 − �L22�/T = L22�A/T − ��/T . �B4�

The flux q−T�I along e1 in Eq. �2.31� may then be calcu-
lated at r=R�0. Its continuity at r=R gives

�2�e + �e��T� − 3�Q − T�I� = 0. �B5�

Here �e is the effective thermal conductivity defined by

�e = �a − �BT = � + L22�A/T − ��2, �B6�

where use of Eqs. �2.13� and �2.32� yields

A

T
− � = � ��

�c
	

Tp

kT

T
− � ��

�T
	

cp

−
�s�
�c�

=
1

T
� ��

�c
	

Tp

�kT + Z� .

�B7�

From ��c /��Tp��� /�T�cp=−��c /�T��p and Eq. �A7� we ob-
tain Z in Eq. �3.22� and �e in Eq. �3.21�. From Eqs. �2.29�
and �3.6� J1 in the mass flux through the interface is deter-
mined by

J1 = �3Q − �2�a + �a��T��/T�c��

= �3I − �2B + B��T��/�c� , �B8�

which yields Eq. �3.23� with the aid of Eq. �3.20�.

APPENDIX C: MASS AND MOLAR FRACTIONS AND
RELATIONS IN NEAR-CRITICAL DILUTE MIXTURES

In hydrodynamic theory the mass fraction c and the
chemical-potential difference � per unit mass are usually
used, but in thermodynamics it is convenient to use the molar
fraction X and the chemical-potential difference 
 per par-
ticle. In terms of the molecular masses m1 and m2 they are
related by �26�

c = m2X/�m1�1 − X� + m2X� , �C1�


 = m2�2 − m1�1. �C2�

At any concentration it generally holds the relation,

� �c

��
	

TP

= m1
2m2

2�n/��3� �X

�

	

TP

. �C3�

We also note the relation �c�= �X��m1cc� /m2XX��. The azeot-
ropy condition �X�=0 is also given by �c�=0.

First we give thermodynamic relations in dilute mixtures
with c�1. In the text of this paper we assume Eqs. �4.1� and
�4.2�. To describe the critical behavior, it is convenient to
introduce the Krichevskii parameter KKr, which is the dilute
limit of the thermodynamic derivative ��p /�X�nT at fixed
n=n1+n2 and T at the solvent criticality �13–17�. It is related
to the derivatives of the critical pressure pc and the critical
temperature Tc with respect to X along the critical line as

KKr =
dpc

dX
− pcx�

dTc

dX
, �C4�

where pcx� =dpcx /dT is the temperature derivative of the co-
existence pressure pcx�T� of the pure fluid. The Clausius-
Clapeyron relation pcx� = ��� / �v� holds for the pure fluid,
where v=1 /n is the inverse density and � is the entropy per
particle. In near-critical two-phase coexistence, the mass
fraction difference �X� and the volume difference �v� are
related by �12�

�X�/�v� = �KKr/Tc�Xc, �C5�

where Xc= �Xg+X�� /2 is the critical value of X �12�. Thus the
parameter W in Eq. �4.5� is expressed near the criticality as

W = KKr�v�/Tc��� = KKr/Tcpcx� . �C6�

On the other hand, the thermodynamic derivative ��X /�
�Tp
behaves as �26�

� �X

�

	

pT

�
X

T
+

X2

nT2Kcr
2 KT
, �C7�

where KT
= ��n /�p�T
 /n is the isothermal compressibility
growing strongly near the criticality. On the right-hand side
of Eq. �C7�, the first term is the dilute limit, while the second
term is the singular contribution stemming from the solute-
solvent interaction and can be important very close to the
criticality. In this paper we neglect the second term in Eq.
�C7�, which is allowable under the condition,

X �
nT

Kcr
2 KT

�
n

W2Cp
, �C8�

where KT= ��n /�p�T /n is the isothermal compressibility and
Cp=�T��s /�T�p�T�pcx� �2KT is the isobaric heat capacity per
unit volume of the pure fluid �26�. However, the reverse
relation X�n /W2Cp eventually holds sufficiently close to
the criticality.

Next we consider the dynamic properties of dilute mix-
tures. The Onsager coefficients L12 and L22 are proportional
to c, while L11 tends to the thermal conductivity of the pure
fluid. Thus, as c→0, A in Eq. �A6� and D in Eq. �A7� tend to
well-defined limits, while kT in Eq. �A8� is of order c as

kT = kT
�c , �C9�

with kT
� being a constant independent of c. The singular part

of L22 �proportional to X2� is negligible compared to the
background part under Eq. �C8� �26�, so that

L22 � m2�cD0, �C10�

where D0 is the diffusion constant of a single solute particle
in the dilute limit. The thermal conductivity � in Eq. �A5�
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behaves in a dilute binary mixture near the solvent criticality
as �26�

� � �s�B/��s + �B� . �C11�

Here �s is the thermal conductivity of the pure fluid growing
strongly near the solvent criticality and �B=�B0 /X is the
critical value inversely proportional to c with �B0 being a
constant. The mode-coupling theory of critical dynamics pre-
dicted the growing behavior �s�TCp /6�����, where � is

the correlation length and Cp��KT� is the isobaric heat ca-
pacity per unit volume. We then recognize that the effective
thermal conductivity �e in Eq. �3.21� may be approximated
as Eq. �4.6� under Eq. �C8�. Using Eq. �C8� and the hydro-
dynamic radius a0 in the Stokes formula D0=T /6��a0, we
can make the following estimation:

�e

�
�

�e

�s
�

nD0

W2X�s
�

n�/a0

CpW2X
� 1. �C12�
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